Sunday, August 18, 2013
Monday, August 12, 2013
hipersensibilidad
Universidad Tecnológica de Santiago
(UTESA)
ASIGNATURA
Inmunlogía y Alergia
TEMA
hipersensibilidad
hipersensibilidad
PRESENTADO A
Dra. Mirta Villar
PRESENTADO POR
Yahaira Collado
Yahaira Collado
Marcela Jiménez Inoa
Esther Ramíres Fernández
Hadassa P. Beuauvoir
Juana Iris Tejada
Rut Esther Báez
Gupo:
002
Tipo I. Hipersensibilidad inmediata o alergia atópica
También denominada
hipersensibilidad mediada por IgE (anafiláctica, inmediata o dependiente de
reaginas). Son las reacciones alérgicas de tipo I según la clasificación de
Gell y Coombs. Constituyen reacciones inflamatorias de instauración inmediata,
aunque a veces semirretardada, causada por la liberación masiva de mediadores
inflamatorios (histamina, triptasa, prostaglandinas y leucotrienos) por
leucocitos basófilos y mastocitos, como consecuencia de la unión, por su
extremo Fc, de anticuerpos IgE frente a determinados antígenos, en la membrana
de dichas células. Tales mediadores son los causantes de las manifestaciones
clínicas, las cuales, según la vía de acceso y el grado de difusión
intracorporal del alergeno, pueden adoptar una forma localizada - como la
rinitis o el asma -, o generalizada - como las reacciones anafilácticas
desencadenadas por medicamentos, picaduras de insectos o ciertos alimentos -.
Son procesos con una alta incidencia, llegando a afectar hasta al 20 por ciento
de la población caucásica en algún momento de su vida. En la actualidad, la
mayoría de los autores utilizan el término alergia (reactividad alterada) para
designar los procesos patológicos causados por una respuesta inmune frente a
antígenos inocuos para la mayoría de la población. Atopia es un término acuñado en los años veinte para
describir la asociación familiar, y por tanto una base genética en la tendencia
de ciertos individuos a padecer una o varias de estas reacciones tras la
exposición a ciertas sustancias antigénicas. De ahí la denominación de alergia
atópica o enfermedades atópicas para referirse a estos procesos.
Los antígenos que
estimulan la formación de respuestas de anticuerpo IgE causantes de las
enfermedades atópicas se denominan alergenos. Puede tratarse de proteínas o glucoproteínas
que forman parte de productos naturales o de sustancias químicas de naturaleza
hapténica (por ej: la penicilina) que al unirse a una proteína portadora se
convierten en material inmunogénico Existen tres tipos de alergenos según la
vía de contacto con el mismo. Pueden ser inhalables (aeroalergenos), alergenos
por ingestión (medicamentos, alimentos, etc.) o alergenos por inoculación
(fármacos y venenos de picaduras de insectos). Los aeroalergenos son los que
provocan, con mayor frecuencia, alergia atópica de las vías respiratorias (asma
y rinitis alérgica). Forman parte de la composición del material particulado de
la atmósfera normal, destacando el polen, los productos orgánicos de origen
animal, las partículas fecales de ácaros microscópicos, las esporas fúngicas y
los productos industriales.
El hecho de que
actúen como alergenos no depende de propiedades intrínsecas que los distinga de
los restantes antígenos convencionales (sustancia extraña al organismo), sino
de la capacidad de ciertos individuos de desarrollar una respuesta de
anticuerpos IgE contra ellos. Tales anticuerpos se fijan por su extremo Fc a
receptores de la membrana de los basófilos y mastocitos de los distintos
órganos (sensibilización), donde pueden permanecer durante semanas. Cuando se
produce un nuevo contacto con el alergeno, su unión a dos o más moléculas de
IgE fijadas desencadena la desgranulación brusca de esas células y la aparición
inmediata de las manifestaciones clínicas; dicha reacción inmediata, además,
puede ir seguida de una reacción de fase tardía, que aparece unas horas
después.
Las
infecciones producidas por virus exacerban las crisis asmáticas y pueden
precipitarlas. Aunque se conoce desde hace tiempo esta asociación, la falta de
modelos animales adecuados ha impedido el estudio detallado de esta relación.
Los autores del artículo investigaron los efectos que la infección por el virus
sincitial respiratorio (VSR) y la influenza A puede producir en ratones
normales sensibilizados con un aeroalergeno como la ovoalbúmina inhalada. Ambos
virus causaron, posteriormente, una enfermedad transitoria. La inhalación de
ovoalbúmina no indujo anticuerpos específicos, a menos que los ratones se
infectaran en el momento de la nebulización. En aquellos ratones con exposición
epidérmica a ovoalbúmina no se desencadenaron respuestas asmáticas, pero se
originaron alteraciones sistémicas agudas cuando la exposición pulmonar había
tenido lugar durante la infección viral. En los ratones que tuvieron una
respuesta sistémica a la ovoalbúmina cutánea se aisló IgG1 plasmática
específica, la cual no se halló en los demás. Los aislados del bazo de los
animales expuestos mostraron citoquinas (IL-4) intracelulares debido a la
exposición viral. Las células TCD8+ aumentaron la producción de g-interferón en la infección por el virus de la
influenza. Ambos virus produjeron reacciones anafilácticas. Estos resultados
muestran que la infección por virus respiratorios potencia la respuesta inmune
humoral y celular frente a los aeroantígenos y propone un modelo experimental
para la continuación del estudio de esta respuesta.
La alergia a los
productos que contienen látex es un problema creciente en los servicios
públicos de sanidad, surgiendo, sobre todo, en los pacientes ingresados en las
unidades de cuidados intensivos, que requieren monitorización invasiva y en los
pacientes que precisan intervenciones quirúrgicas. Los autores del artículo han
procurado revisar los aspectos más importantes de la alergia al látex que
debieran ser conocidos por los profesionales de la salud. Los autores afirman
que el látex presenta dos alergenos mayores, el Hev b1 y el Hev b8. Al parecer,
el látex tiene una hiperreactividad cruzada con ciertos alimentos, frutas exóticas
y algunos aeroalergenos, como el polen. La población susceptible está
conformada por los profesionales de la industria del látex, los trabajadores
sanitarios, los pacientes que van a requerir cualquier clase de manejo
quirúrgico, los ingresados en las unidades de cuidados intensivos, los niños
con espina bífida y las anomalías urológicas severas. Los signos clínicos
entran dentro del grupo de hipersensibilidad tipo I, como la urticaria, el
angioedema y el shock anafiláctico. El diagnóstico se basa en la detección de
la IgE específica, tests de provocación y tests intradérmicos. La profilaxis se
basa en la suspensión de todas las sustancias sospechosas de producir la
reacción y que puedan contener látex, reemplazando los guantes de exploración
con vinilo y evitando las comidas que puedan tener una reactividad cruzada con
el látex.
HIPERSENSIBILIDAD
TIPO II
En una reacción de hipersensibilidad de tipo II (también conocida como hipersensibilidad citotóxica) los anticuerpos producidos por la
respuesta inmune se unen a antígenos presentes en las
superficies de las propias células del paciente. Los antígenos que son
reconocidos por este mecanismo pueden ser tanto intrínsecos ( autoantígenos,
que forman parte innata de las células del paciente) o extrínsecos (adsorbidos
sobre las células durante la exposición a algunos antígenos foráneos, o
posiblemente como parte de la infección de un agente patógeno). Estas células
son reconocidas por los macrófagos o células dendríticas, las cuales actúan como células presentadoras de antígenos.
Esto provoca una respuesta por parte de los linfocitos B,
lo que lleva a la producción de anticuerpos contra los antígenos foraneos.
Un ejemplo de reacción de hipersensibilidad de tipo II es la
reacción a la penicilina debido a que la droga se puede unir a la membrana de
loseritrocitos,
causando que sean reconocidos como agentes extraños; se produce una
proliferación clonal de células B y un aumento en la producción de anticuerpos
dirigidos contra la penicilina. Los anticuerpos de tipo IgG e IgM se unen a estos antígenos formando
complejos que son capaces de activar la vía clásica del complemento, la cual es capaz
de eliminar células que presentan antígenos extraños (las cuales son usualmente
patogénicas, aunque este no sea el caso). De esta forma se forman in situ
mediadores inflamatorios agudos y complejo de ataque a membrana causa la lisis y muerte celular. La
reacción puede tomar desde un par de horas hasta un día en completarse.
Reacciones autoinmunes similares a hipersensibilidad
de tipo II
Las enfermedades autoinmunes semejan a reacciones de hipersensibilidad de
tipo II y IV. Se diferencian de las reacciones de hipersensibilidad en que los
antígenos que desencadenan la respuesta inmune son autoantígenos en
vez de ser antígenos foraneos como en las reacciones de hipersensibilidad. Un
poco más abajo se detallan algunos ejemplos de respuestas autoinmunes que
semejan reacciones de tipo II.
Hipersensibilidad
mediada por complejo inmunitarios tipo III
Este tipo de reacciones es inducida por la
presencia de complejos antígeno-anticuerpo los cuales producen daño celular,
como resultado de la capacidad de activar una serie de mediadores químicos,
especialmente el sistema de complemento.
Dos tipos generales de antígenos son capaces de
producir el daño por complejos inmunes; el más frecuente corresponde a un
antígeno exógeno el cual puede ser una proteína extraña, productos bacterianos,
virus, etc. El otro tipo de antígenos corresponde a componentes propios del
organismo, es decir, endógenos que pueden interaccionar contra diversos
componentes celulares, esencialmente proteínas nucleares, ácidos nucleicos y
componentes citoplasmáticos.
La reacción se inicia cuando el antígeno se
conjuga con el anticuerpo ya sea dentro de la circulación (complejos
circulantes intravasculares tipo III A) o en espacios tisulares (complejos in
situ extracelulares tipo III B).
Los complejos formados en la circulación (III A)
producen daño, especialmente en las paredes de los vasos cuando son atrapados
en algunos órganos que actúan como filtro, como la circulación renal, pulmonar,
plexos coroídeos etc. Ejemplos de ello, enfermedad generalizada: la enfermedad del suero aguda y localizada en un órgano: glomerulonefritis o la reacción de
Arthus.
El daño tipo III B puede ser por interacción de
anticuerpos con antígenos endógenos secretados por células como en el rechazo,
tiroiditis, orquitis y algunas glomerulonefritis; interacción de anticuerpos
con antígenos intrínsecos presentes en membranas basales o matriz intercelular
como en el síndrome de Goodpasture, artritis reumatoídea, lupus eritematoso
sistémico, penfigoide buloso etc. Interacción de anticuerpos con antígenos
tisulares, como en angeítis, alveolitis alérgica extrínseca.
En este momento nos detendremos brevemente para
mencionar algunas características del sistema de complemento e indicar cual es
su participación en la patogenia de las lesiones.
El sistema de complemento es un sistema complejo
en el cual se encuentran 11 proteínas que interactúan para producir fragmentos
o complejos con diferentes actividades biológicas. En la primera etapa se
requiere la presencia de un complejo antígeno-anticuerpo el cual actúa uniéndose
a la primera proteína de complemento o C1. C1 presenta 3 componentes C1q,
C1r, C1s y que es denominada también la unidad de
reconocimiento. Posteriormente aparecen C2, C4, y C5,
también denominado sistema de activación enzimática y finalmente C5,
C6, C7, C8, C9 considerada como la unidad de ataque.
El complejo antígeno-anticuerpo al exponer el
fragmento Fc se une con C1 especialmente
a través de C1q y ante una reacción iónica reversible. Esta unión
determina que se active a C2 y
C4 transformándolos en
productos activos C2b 4b
que va a determinar su acción sobre uno de los componentes más importantes del
complemento que es C3. C3 al ser activado se puede tranformar en
tres sustancias distintas:
- C3a o Anafilotoxina
- C3b que produce la opsonización
- el complejo C3C2C4 o complejo convertasa, el cual va a
activar a C5 y
secuencialmente hasta C9 que
va a tener un efecto de citólisis. La secuencia que hemos señalado a
continuación se conoce como la vía clásica del complemento.
El complemento puede ser activado por una vía
alterna a través de un complejo antígeno-anticuerpo, u otros antígenos que
actúan directamente sobre C3. Frecuentemente la properdina es
requerida junto a la presencia de antígeno-anticuerpo para activar a C3.
A su vez la activación de la properdina puede estar determinada por algunos
mitógenos y esencialmente endotoxinas.
El complemento ya mencionado que tiene diversas
funciones algunas como mediador vascular como la Anafilotoxina o C3a
, la opsonización C3d, la quimiotaxis de leucocitos y monocitos (C3C5,
C5C6C7), y la lisis celular (C5C9)
Volviendo a las reacciones antígeno-anticuerpo y
al daño producto de la reacción de complejos inmunes es importante señalar que
cuando se forma un complejo inmune es posible encontrarlo en dos grandes condiciones:
a) Complejo antígeno-anticuerpo con
exceso de antígenos: son en general complejos pequeños que circulan durante
bastante tiempo y se van depositando paulatinamente en diversos órganos.
b) Complejo antígeno-anticuerpo con
exceso de anticuerpos: en
este caso los complejos son de gran tamaño precipitan rápidamente tendiendo a
localizarse en el sitio de introducción del Ag.
El destino de estos complejos depende
estrechamente de la acción de la vía clásica del complemento. La fijación de
complemento inhibe la precipitación de complejos inmunitarios por la unión
covalente C3b, que evita la interacción Fc-Fc que se necesita para
formar grandes agregados insolubles. Estos pequeños complejos con C3b
se unen al receptor CR1 del complemento sobre el eritrocito humano y son
transportados hasta el hígado donde los macrófagos los fagocitan e inactivan.
Si hay defectos en el sistema del complemento o si el sistema está saturado los
complejos circulan y se depositan en órganos filtros.
En las reacciones de hipersensibilidad por
complejos antígeno-anticuerpo podemos encontrar dos formas principales: una
forma generalizada y una forma localizada.
- Forma generalizada (enfermedad del suero):
Esta lesión es producida por la administración de
proteínas extrañas y en la cual se producen pequeños complejos
antígeno-anticuerpo que se agregan dentro de la circulación. En el hombre la
enfermedad del suero se manifiesta por la presencia de urticaria, fiebre,
edema, presencia de adenopatías y ocasionalmente artritis, glomerulonefritis y
vasculitis. Esta lesión ocurre de 8
a 12 días posterior al uso terapéutico de antisuero
(antitoxina tetánica equina) o drogas (penicilina, sulfonamidas, tiouracilo,
hidantoínicos etc.)
En la enfermedad del suero se reconocen formas
agudas y crónicas. La activación del sistema de complemento produce una
disminución del complemento sérico. En la Inmunofluorescencia es posible
observar depósito de inmunoglobulina G, C3, C4, C1q,
en un patrón de tipo granular. El depósito de estas sustancias se visualiza
predominantemente en las paredes vasculares. Entre la segunda semana aparecen
las lesiones inflamatorias en corazón, vasos sanguíneos, articulación y riñón.
Una vez que el sistema inmune continúa la producción de anticuerpos se forman
grandes complejos inmunes los cuales son fagocitados por el sistema
retículoendotelial y las lesiones empiezan paulatinamente a desaparecer. La
enfermedad crónica se produce por la exposición prolongada al Ag, un ejemplo
sería la glomerulonefritis membranosa.
- Forma localizada (reacción de Arthus):
La reacción de Arthus es el prototipo y
corresponde al modelo experimental de la enfermedad por complejos tóxicos. Se
observa un área de necrosis tisular en el lugar donde previamente ya se había
inyectado un Ag, la inflamación vascular se produce por el depósito del
complejo inmune, generalmente es producida en la piel. Es una reacción alérgica
inducida en presencia de exceso de anticuerpos, en este caso circulantes
producto de la primera inyección. Esta reacción se puede producir
experimentalmente al inyectar localmente un antígeno a un animal previamente
sensibilizado. La reacción de Arthus se desarrolla en algunas horas (4 a 10 horas posterior a la
inyección). En esta área se observan zonas de edema, hemorragia y ulceración
secundaria a angeítis necrotizante aguda. En la Inmunofluorescencia es posible
observar algunas inmunoglobulinas, fibrinógeno dentro de las paredes vasculares
especialmente en las membranas.
También en la pared vascular se observa depósito
de material fibrinoide con destrucción de los vasos. La ruptura de estos
produce la extravasación sanguínea con trombosis e isquemia tisular.
Otros ejemplos de enfermedades mediadas por
hipersensibilidad III son:
•
Glomerulonefritis postestreptocóccica
•
Lupus eritematoso sistémico
•
Panarteritis nodosa
•
Angeítis leucocitoclástica
•
Artritis reumatoídea
•
Eritema nodoso leproso
Tipo IV. Reacciones de
hipersensibilidad retardada
Son las reacciones tardías mediadas por células.
El prototipo es la reacción de Mantoux. Tras la administración de tuberculina a
un paciente previamente sensibilizado, aparece la reacción a las 48-72 horas
como una induración en el área de inyección; Ejemplos de patología por
hipersensibilidad tipo IV es el rechazo agudo de los trasplantes los granulomas
y la hipersensibilidad por contacto.
Las denominadas
reacciones de hipersensibilidad retardada constituyen reacciones inflamatorias
debidas al reclutamiento y activación de macrófagos por el efecto de las
citocinas liberadas por linfocitos TCD4+ al reconocer al antígeno en asociación
con las moléculas del complejo principal de histocompatibilidad (MHC) de clase
II en la membrana de las células presentadoras del antígeno (APC). En esta
reacción, también denominada hipersensibilidad de tipo IV según la
clasificación de Gell y Coombs, no intervienen los anticuerpos, a diferencia de
lo que ocurre con las otras formas de mecanismos inmunes de lesiones inflamatorias.
Todas estas
reacciones inflamatorias o de "hipersensibilidad" tienen en común el
hecho de estar iniciadas por una reacción inmunológica contra un antígeno y
ocurrir en un individuo sensibilizado (es decir, son el resultado de una
reestimulación antigénica en una persona que ya ha desarrollado una
respuesta inmune celular frente a dicho antígeno) la hipersensibilidad
retardada se manifiesta habitualmente de cinco maneras distintas:
1. Hipersensibilidad retardada frente a antígenos solubles. En general,
cuando se efectúan pruebas cutáneas con antígenos solubles (purificados o no)
obtenidos de diversos agentes infecciosos (bacterias, virus, hongos y
protozoos),
2. Hipersensibilidad retardada en las manifestaciones de resistencia general
frente a infecciones.
3. Dermatitis por contacto y reacciones adversas a fármacos en otros órganos. En las dermatitis por contacto, la reacción de
hipersensibilidad retardada se induce por un compuesto químico reactivo
(hapteno) que, tras acoplarse a proteínas epidérmicas, actúa como un inmunógeno
efectivo.
Una respuesta
similar ocurre, en ocasiones, con fármacos administrados por otras vías,
desencadenándose lesiones de hipersensibilidad en órganos como riñones,
pulmones e hígado.
4. Reacciones granulomatosas. Los granulomas son lesiones resultantes de agregados de
fagocitos mononucleares activados (principalmente macrófagos), muchos de los
cuales han fagocitado el agente responsable.
5. Rechazo de homoinjertos y reacciones de hipersensibilidad retardada. El trasplante de células vivas de un individuo a
otro de la misma especie (homoinjerto) suele terminar en la destrucción y el
rechazo del injerto.
Las reacciones de
hipersensibilidad retardada son características de otro tipo de bacterias, como
las micobacterias,
Se cree que el
estrés exacerba un gran número de enfermedades, siendo alteraciones
dermatológicas en un alto porcentaje. Las células epidérmicas del Langerhans
parecen jugar un papel interesante en las reacciones de hipersensibilidad de la
piel.
Hipersensibilidad
tipo V o hipersensibilidad estimulatoria o neutralizante
Esta reacción es mediada por un anticuerpo
que reacciona con un componente de la superficie celular e induce o neutraliza
la actividad de la célula correspondiente. Ejemplos son el hipertiroidismo en
la enfermedad de Basetow Graves donde una inmunoglobulina G se une a un
receptor TSH de la célula tiroidea y la estimula produciendo hormona tiroidea.
Ejemplos en neurología es la Miastenia Gravis donde una inmunoglobulina G se
une al receptor de acetilcolina de la placa motora y lo bloquea. Otros ejemplos
son Eaton - Lambert, lupus y sindromes paraneoplásicos.
Sunday, August 11, 2013
Yahaira Duran Hipersensibilidad tipo IV
Tipo IV. Reacciones de hipersensibilidad retardada Son las reacciones tardías mediadas por células. El prototipo es la reacción de Mantoux. Tras la administración de tuberculina a un paciente previamente sensibilizado, aparece la reacción a las 48-72 horas como una induración en el área de inyección; Ejemplos de patología por hipersensibilidad tipo IV es el rechazo agudo de los trasplantes los granulomas y la hipersensibilidad por contacto.
Las denominadas reacciones de hipersensibilidad retardada constituyen reacciones inflamatorias debidas al reclutamiento y activación de macrófagos por el efecto de las citocinas liberadas por linfocitos TCD4+ al reconocer al antígeno en asociación con las moléculas defvl complejo principal de histocompatibilidad (MHC) de clase II en la membrana de las células presentadoras del antígeno (APC). En esta reacción, también denominada hipersensibilidad de tipo IV según la clasificación de Gell y Coombs, no intervienen los anticuerpos, a diferencia de lo que ocurre con las otras formas de mecanismos inmunes de lesiones inflamatorias.
Todas estas reacciones inflamatorias o de "hipersensibilidad" tienen en común el hecho de estar iniciadas por una reacción inmunológica contra un antígeno y ocurrir en un individuo sensibilizado (es decir, son el resultado de una reestimulación antigénica en una persona que ya ha desarrollado una respuesta inmune celular frente a dicho antígeno) la hipersensibilidad retardada se manifiesta habitualmente de cinco maneras distintas:
1. Hipersensibilidad retardada frente a antígenos solubles. En general, cuando se efectúan pruebas cutáneas con antígenos solubles (purificados o no) obtenidos de diversos agentes infecciosos (bacterias, virus, hongos y protozoos),
2. Hipersensibilidad retardada en las manifestaciones de resistencia general frente a infecciones.
3. Dermatitis por contacto y reacciones adversas a fármacos en otros órgans. En las dermatitis por contacto, la reacción de hipersensibilidad retardada se induce por un compuesto químico reactivo (hapteno) que, tras acoplarse a proteínas epidérmicas, actúa como un inmunógeno efectivo.
Una respuesta similar ocurre, en ocasiones, con fármacos administrados por otras vías, desencadenándose lesiones de hipersensibilidad en órganos como riñones, pulmones e hígado.
4. Reacciones granulomatosas. Los granulomas son lesiones resultantes de agregados de fagocitos mononucleares activados (principalmente macrófagos), muchos de los cuales han fagocitado el agente responsable.
5. Rechazo de homoinjertos y reacciones de hipersensibilidad retardada. El trasplante de células vivas de un individuo a otro de la misma especie (homoinjerto) suele terminar en la destrucción y el rechazo del injerto.
Las reacciones de hipersensibilidad retardada son características de otro tipo de bacterias, como las micobacterias, Se cree que el estrés exacerba un gran número de enfermedades, siendo alteraciones dermatológicas en un alto porcentaje. Las células epidérmicas del Langerhans parecen jugar un papel interesante en las reacciones de hipersensibilidad de la piel.
Sunday, July 28, 2013
Maduración, activación y diferenciación de los linfocitos T
Universidad Tecnológica de Santiago
UTESA
Trabajo presentado a:
Dr. Mirta Villar
Como requisito de la asignatura:
Inmunología y alergia
Presentado por:
Versania Rojas -- 1-10-0211
Angela Nicasio -- 1-07-2757
Angela Grullos -- 2-09-0440
Tema:
Maduración, activación y diferenciación de los linfocitos T
Grupo:
AVA # 1
Maduración, activación y diferenciación de los linfocitos T
El receptor clonotípico de las células T (TCR) presenta dos funciones
principales según la fase de desarrollo en que se encuentra la célula dentro
del linaje de los linfocitos T que son:
1. Durante la
maduración de los timocitos en el timo, participa en la selección tímica
positiva y negativa.
2.
Una
vez que el linfocito T ha madurado, emigra a la periferia, y entonces el
receptor participa en el reconocimiento de antígenos, lo que desencadena un
programa de activación que lleva a la proliferación y diferenciación de las
células T en dos subclones: uno de células efectoras, y otro de células de
memoria.
Refiriéndonos a los linfocitos con receptores de tipo a b,
podemos hacer un avance resumido de estos procesos de maduración y activación:
En la Maduración: la enorme diversidad antigénica
potencial se reduce a un 2% durante la maduración intratímica de los timocitos:
y sólo llegan a madurar aquellas células restringidas a reconocer lo no-propio
en el contexto del haplotipo MHC propio autorrestricción y autotolerancia.
Existe dos fases finales de la maduración que es la
ruta de desarrollo diferente que generan dos subpoblaciones: linfocitos CD4+
restringidos por MHC-II y linfocitos CD8+ restringidos por
MHC-I.
Y en la Activación la células T maduras periféricas
se inicia con la interacción entre el TCR y un péptido antigénico enclavado en
la hendidura del MHC. Ellos desencadenan la proliferación clonal y
diferenciación en dos subpoblaciones, una de T efectoras y otra de T de
memoria.
El Timo es cuando surge el inicio
del desarrollo embrionario a partir de capas ectodérmicas y endodérmicas
procedentes del tercer bolsillo faríngeo y de la tercera hendidura branquial. Estas
dos estructuras se invaginan, y se cierran, y las dos capas quedan
superpuestas, de modo que la ectodérmica rodea a la endodérmica, formando el
llamado rudimento tímico.
La capa ectodérmica formará los tejidos epiteliales
corticales del timo
La capa endodérmica formará los tejidos epiteliales
medulares.
El rudimento tímico atrae entonces a células de origen hematopoyético,
que lo colonizan: células dendríticas, macrófagos y precursores de timocitos.
Al nacer, los humanos tienen ya plenamente desarrollado el timo.
En su corteza encontramos sólo timocitos en fases
tempranas de su maduración, junto con algunos macrófagos, dentro del estroma
cortical a base de células corticales epiteliales.
En la médula encontramos timocitos en fases más
avanzadas de maduración con células dendríticas y macrófagos, todos inmersos en
un estroma medular a base de células epiteliales medulares.
Los ratones, al nacer, aún no han terminado de formar el timo adulto.
El primer marcador de superficie en aparecer en ratón es el Thy-1
equivalente al CD2 de humanos, que ya no se pierde por lo tanto, se trata de un
marcador que caracteriza al linaje de T. Estas células Thy-1+ CD4- CD8- dobles
negativas pueden escoger dos vías alternativas:
1. En una de las
dos rutas, las células hacen reordenaciones productivas
de g y d y expresan CD3 en su membrana. Suponen sólo <1%
de los timocitos. Son las primeras en aparecer: se detectan al día 14 de
gestación, pero desaparecen al nacimiento
2. La mayoría
escoge una vía alternativa, que discurre de la siguiente manera:
día 16: Las células reordenan genes de cadenas b. Si
no se logran reordenaciones productivas, entran en apoptosis. Generando el
receptor pTa:bjunto con CD3. Este receptor induce la proliferación celular y la
coexpresión de CD4 y CD8: de este modo aparecen los timocitos grandes doble
positivos. El receptor pTa:b también induce la reordenación de genes de cadenas
.
Día 17: CD4+ CD8+ TCR-2+ CD3+. Se trata de los pequeños timocitos
dobles positivos, que dejan de dividirse. Estas células ya provistas del
complejo receptor específico van a ser sometidas, hasta la época del nacimiento
en que alcanzan sus máximos niveles, a selección positiva y negativa.
En la selección positiva: sobreviven aquellas
células que tengan TCR capaces de reconocer MHC-I o MHC-II de células
epiteliales del timo. Con ello se garantiza la restricción por propio haplotipo
de las células T.
En la selección negativa: son aquellas células que
han pasado la selección positiva mueren por apoptosis las que posean TCR que
reconozcan con alta afinidad péptidos propios enclavados en el MHC o MHC propio
solo. Ello tiende a garantizar la propiedad de autotolerancia por eliminación
de los linfocitos T autorreactivos.
Los timocitos dobles positivos que superan la doble
selección tímica se desarrollan en una de dos posibles rutas alternativas:
CD4+ CD8- TCR-2+ CD3+ representan el 10% de
timocitos
CD8+ CD4- TCR-2+ CD3+ (un 5% de los timocitos adicionalmente,
y quizá procedente de los anteriores, al 5º día del nacimiento se detecta una
tercera subpoblación de CD4- CD8- TCR+ CD3+.
Estas poblaciones abandonan el timo como linfocitos T maduros inmunocompetentes vírgenes, y
circulan por la periferia, pudiéndose establecer en órganos linfoides
secundarios ganglios y recirculando continuamente entre sangre y linfa, a la
espera de que en uno de sus asentamientos en ganglios llegue a encontrar su
antígeno; si no lo encuentra, muere al cabo de unas 5 a 7 semanas.
Localización
intratímica de las diversas fases madurativas:
Los timocitos doble negativos se localizan en la zona subcapsular de la
corteza.
Los pequeños timocitos dobles positivos se localizan en la corteza.
Los timocitos maduros CD4+ y CD8+ se ubican en la médula.
En la corteza, las células epiteliales corticales
establecen contactos por sus largos procesos de membrana con los timocitos.
Selección tímida positiva y negativa
En ambos procesos selectivos parecen jugar un papel importante las
células del estroma tímico: células epiteliales tímicas, macrófagos y células
dendríticas; todas ellas expresan en sus membranas grandes niveles de moléculas
MHC-I y/o MHC-II. Los timocitos inmaduros dobles positivos (CD4+ CD8+ TCR+
CD3+) interaccionan, por mecanismos aún oscuros, con estas células estromales,
lo que conduce a la selección positiva y negativa.
En la selección positiva se da interacción de los timocitos con células
epiteliales corticales del timo. Algunos autores han sugerido la interacción de
los timocitos inmaduros dobles positivos con dichas células epiteliales por
medio del TCR restringido por MHC podría conllevar algún tipo de señal
protectora que librara a estos timocitos de la muerte celular programada; en
cambio, la apoptosis afectaría a los timocitos no restringidos por MHC propio.
De los timocitos que sobreviven a la selección positiva algunos llevan
TCR de baja afinidad hacia auto-péptidos presentados por MHC, y otros llevan
TCR con alta afinidad hacia auto-péptidos presentados por ese MHC: estos
últimos sufren selección negativa, que ocurre en la zona de transición
cortico-medular y en la médula tímica, y en la que las células dendríticas y
los macrófagos interaccionan con los timocitos portadores de TCR de alta
afinidad hacia {autopéptidos-MHC} o hacia MHC solo.
La activación y
expansión clonal de TH es un acontecimiento central en la
producción de las respuestas inmunes específicas (tanto la humoral como la
celular).
Algunas ideas
generales:
Los
linfocitos T vírgenes son células en reposo que se encuentran
"aparcadas" en la fase G0 del ciclo celular. La
activación, proliferación y diferenciación de estas células es un fenómeno
complejo.
La
activación se inicia cuando el linfocito TH interacciona, a
través de su complejo TCR-CD3, con el antígeno peptídico
(exógeno) procedente de procesamiento endosómico- enclavado en el surco de
MHC-II de una célula presentadora. En esta interacción inicial, y en la señal
que se va a producir, participan, además, moléculas accesorias, como el
correceptor CD4.
Esta
interacción inicial "dispara" una compleja cascada de acontecimientos
bioquímicos, en la que son esenciales actividades quinasas y fosfatasas, y que
culminan con la activación y expresión de diversos genes, entre los que se
cuentan el de la IL-2 y el de su receptor.
La
secreción autocrina de IL-2 por parte de los linfocitos TH hace
que éstos salgan de la fase G0 y entren y progresen en el ciclo
celular: ello provoca la proliferación y diferenciación de la célula T en dos
subpoblaciones: una de células efectoras (las T coadyuvantes o colaboradoras) y
las TH de memoria.
Pero
para que ocurra esto se requieren, además señales coestimulatorias. Si tales
señales químicas no se suministran al tiempo en que se está produciendo la
interacción específica TCR-péptido-MHC, se induce un estado de incapacidad de
respuesta inmune que se denomina anergia, que se manifiesta en tolerancia
inmunológica hacia el estímulo antigénico.
El TCR tiene colas
citoplásmicas cortas que por sí mismas son incapaces de señalización
intracelular. Una vez que dicho TCR se une al péptido:MHC, esta señal se
transduce al interior de la célula T por medio de los dominios citoplásmicos de
CD3, el correceptor CD4 y varias moléculas accesorias (CD2, CD45). Dicha
transducción de señal se realiza por medio de una serie de proteín-quinasas y
proteín-fosfatasas.
Proteín-quinasas de la familia del protooncogén src
- Proteína p56lck
Se trata de una proteín-quinasa que se une a
membrana mediante ácido mirístico engarzado a la glicocola en posición 2 (Gly2).
Posee dos secuencias homólogas con otras proteínas
(SH2 y SH3).
La SH2 participará en el reconocimiento de
tirosinas fosforilables en la proteína diana.
La porción carboxiterminal es la que tiene
actividad de quinasa. Obsérvese la existencia de dos tirosinas (representadas
por Y): la que está en la posición 394 (denominada de regulación positiva) es
la tirosina que se fosforila al activarse el linfocito T, mientras que la que
está en posición 505 (llamada Tyr de regulación negativa) está fosforilada
(Tyr-P) en las células T en reposo, y se desfosforila cuando las células se
activan.
En el primer tercio se encuentra una cisteína que
será la encargada de unirse por puente disulfuro con CD4 (o en el caso de TC,
con CD8). También se asocia físicamente con las
cadenas x y e del CD3.
- Proteína p59 fyn
Su estructura es muy parecida a la de p56lck.
También se encuentra anclada a la membrana por miristilación.
Igualmente posee una Tyr cerca del extremo
carboxi-terminal, que cuando está fosforilada hace que la p59fyn esté
inactiva, y otro sitio Tyr capaz de recibir fosfato por autofosforilación de
esta quinasa, lo cual hace que la proteína pueda fosforilar a otras proteínas.
Está físicamente asociada a cadenas x del
CD3.
Fosforilasa
ZAP-70
No está asociada por miristilación a la membrana.
Contiene una Tyr capaz de autofosforilarse, pero a
diferencia de las proteínas de la familia src, carece de Tyr de
regulación negativa
En las células T en reposo, la ZAP-70 no se
encuentra asociada al complejo TCR-CD3; sin embargo, cuando se inicia el proceso
de activación celular, y una vez que las cadenas x y e de
CD3 quedan fosforiladas por otras proteín-quinasas, la ZAP-70, por medio de sus
dominios SH2 se une a estas cadenas fosforiladas, y entonces queda activada en
su capacidad de fosforilasa.
Fosfatasa CD45
(=LCA=T200)
El CD45 es en realidad una familia de fosfatasas
específicas de tirosina, que aparecen en todas las células del linaje
hematopoyético excepto en los eritrocitos.
Existen varias isoformas, de entre 180-200 kDa, que
proceden de procesamiento alternativo de un mismo tipo de ARN, y cada una de
ellas aparece en determinados tipos celulares. Por ejemplo, CD45RA aparece en T
vírgenes mientras que CD45R0 en T cebados.
Tiene un dominio extracelular, que está
glucosilado; se une a la CD22.
Su porción citoplásmica es larga, y cuenta con dos
dominios dotados de actividad fosfatasa de tirosinas (PTP).
Parece ser que una de sus funciones es
desfosforilar la Tyr-P situada cerca del extremo carboxi-terminal de las
proteín-quinasas (PTK) p56lck y p59fyn.
La señalización a través del complejo TCR-CD3
requiere que se agreguen muchos complejos junto con sus correspondientes
correceptores CD4, y con CD45. Los numerosos conjuntos TCR-CD3-CD4
interaccionan simultáneamente con muchos complejos péptido:MHC-II de la célula
presentadora de Ag (se requieren al menos unos 100 de tales complejos). Cada
TCR se une al péptido antigénico enclavado en el MHC-II de la célula
presentadora de antígeno. Al mismo tiempo, el CD4 interacciona (por su dominio
extracelular) con el dominio b 2 de la MHC-II. Esta
interacción parece que provoca un cambio conformacional que se transmite a las
colas citoplásmicas de los polipéptidos del CD3 y del CD4. Ello induce la
yuxtaposición de p56lck con las secuencias ARAM (=ITAM) de las
proteínas de CD3.
Entonces, la actividad fosfatasa de CD45 provoca la
desfosforilación de la tirosina fosforilada (Tyr-P) carboxi-terminal de p56lck y
de p59fyn, lo que supone la activación de estas dos
proteín-tirosínquinasas (PTK): se autofosforilan en la otra tirosina (la de
regulación positiva).
La activación de las dos PTK citadas por
autofosforilación provoca que a su vez éstas fosforilen las cadenas del complejo
CD3, reconociendo las secuencias ARAM en x y en e . También
se fosforila la cola.
A las colas fosforiladas de CD3 y CD4 se une ahora
la ZAP-70, de modo que ésta adquiere a su vez su actividad de proteínquinasa,
con lo que puede fosforilar a cadenas del CD3 y a otras proteínas.
La ZAP-70 activa y la Fyn activa fosforilan a la
fosfolipasa Cg 1 (PLCg 1), que originalmente es una proteína
citoplásmica; al fosforilarse la PLCg1 se activa y emigra al lado citoplásmico
de la membrana, reconociendo otras proteínas que tienen tirosinas fosforiladas.
Al hacer esto, se facilita que la PLCg 1 entre en contacto con su
sustrato: el fosfatidil-inositol-bifosfato (PIP2).
Entonces, la PLCg 1 hidroliza a este PIP2,
generando inositol-trifosfato (IP3) y diacilglicerol (DAG), cada uno
de los cuales suponen el arranque de sendas rutas dentro de esta compleja
cascada activadora:
A.
Ruta del inositol-trifosfato (IP3):
·
El IP3
se une a un receptor específico situado en el REr, provocando la salida al
citoplasma de grandes cantidades de Ca++, y junto con IP4 provoca también la
entrada desde el exterior celular, a través de canales de calcio de la membrana
citoplásmica, de más cantidades de este catión.
·
El
aumento intracelular de Ca++ estimula a la enzima calmodulina,
que es una serín/treonín-quinasa
·
La
calmodulina activada activa a su vez a la calcineurina, que es una fosfatasa
·
La
calcineurina activada cataliza la desfosforilación del factor NF-AT
citoplásmico fosforilado (NF-ATc-P).
·
Una vez
desfosforilado, el NF-AT emigra al núcleo, donde se junta con el factor nuclear
AP1, formando entrambos un factor de activación transcripcional de varios
genes, entre ellos el que codifica la citoquina IL-2.
- Ruta del diacilglicerol
(DAG):
·
El DAG
estimula, junto con el Ca++, a la proteín-quinasa C (PKC), que hasta ese
momento residía en el citoplasma.
·
Al
activarse, la PKC emigra a la cara interna de la membrana citoplásmica; allí,
en presencia de los fosfolípidos, ejerce su función como serín/treonín-quinasa:
- fosforila una amplia variedad de proteínas, entre las cuales se
encuentra la codificada por el protooncogén ras. La proteína
Ras a su vez inicia otra cascada de fosforilaciones que llega hasta las
quinasas MAP. Estas quinasas parece que emigran al núcleo, donde activan
por fosforilación a factores de transcripción.
- otra de las consecuencias de la actividad PKC es que se fosforila el
componente inhibidor del factor NF-k B que estaba retenido en el
citoplasma.Al fosforilarse, el componente inhibidor queda a merced de unas
proteasas, que lo degradan. Es entonces cuando el NF-k B puede
emigrar al núcleo y unirse a secuencias específicas del promotor del gen
de IL-2 y de otros genes.
Además de las
señales suministradas a partir del contacto entre el complejo TCR-CD3 con el
péptido-MHC, la activación del linfocito TH requiere una señal
adicional, denominada coestimulatoria, que puede consistir en alguna de las
siguientes:
la
citoquina IL-1, suministrada por la célula presentadora de antígeno (APC)
la
citoquina IL-6, de la APC
pero la
señal más potente es la que supone el contacto entre la molécula B7 (=CD80) de
la célula presentadora y la CD28 o la CTLA-4 del linfocito TH.
B7 (=CD80) consta de dos cadenas idénticas con dos
dominios de tipo Ig. Se expresa exclusivamente en células presentadoras de
antígeno capaces de estimular a linfocitos T. Se puede presentar en dos
versiones estructuralmente parecidas, denominadas B7.1 y B7.2.
La CD28 es una glucoproteína
homodimérica, cuyo monómero pesa 44 kDa, presente en linfocitos TH en
reposo. Cada cadena presenta un dominio de tipo V-Ig, y está muy glucosilada.
Tiene afinidad baja hacia la B7.
La CTLA-4 está codificada
por un gen cercano al de la CD28, presentando ambas grandes homologías. Pero la
CTLA-4 sólo se expresa en linfocitos TH activados, siendo su
afinidad muy alta hacia la molécula B7. Parece que interviene en las
interacciones entre TH y B
La interacción entre
CD28 y B7 ejerce un efecto sinérgico sobre la señal transmitida desde el
complejo TCR-CD3, de modo que aumenta la producción de IL-2 y la proliferación
de linfocitos T coadyuvantes.
Tras la interacción
del linfocito TH con el péptido enclavado en el surco de MHC-II
de una célula presentadora de antígeno, se pone en marcha unas rutas que
conducen a la activación de una serie de genes.
Los genes que se
activan se pueden clasificar según el momento relativo de su expresión, en tres
categorías:
- Genes de expresión inmediata (una media hora). Estrictamente
hablando, estos genes no se activan, sino sus productos ya preformados.
- Genes de expresión temprana (1 a 2 horas): son esencialmente los que
codifican las citoquinas IL-2 (así como el gen de su receptor IL-2R),
IL-3, IL-6 e interferón gamma (IFN-g).
- Genes de expresión tardía (hasta 2 días o más): los que codifican
ciertas moléculas de adhesión intercelular.
Para que se produzca
la expansión clonal de los linfocitos TH se necesita un
incremento en la expresión del gen de la interleuquina 2 (IL-2) y de su
receptor (IL-2R). En esta tarea interviene una serie de proteínas reguladoras y
factores de transcripción que se unen a secuencias específicas de la zona 5’ no
codificadora (promotor/intensificador) de los correspondientes genes:
complejo
AP1 (c-Fos+c-Jun): se une al elemento TRE
factor
nuclear NF-AT
factor
{AP1+NF-AT}, que es específico de las células T: se une al elemento ARRES
complejo Oct-1+Oct-2+OAP: se une a OBM
factor
NF-kB: se une a la secuencia kB-RE.
La unión de un
linfocito TH con un complejo péptido-MHC II de una célula
presentadora de antígeno puede conducir a dos tipos de respuestas opuestas:
activación
y expansión clonal
anergia
clonal
La anergia clonal es
la incapacidad proliferativa de un linfocito tras un contacto con el complejo
péptido-MHC, y se debe a la carencia de la señal coestimulatoria proporcionada
por la interacción entre CD28 del linfocito TH y B7 de la APC.
No se trata de una mera no-respuesta pasiva, sino que la anergia es un estado
activo de no proliferación. Para ilustrar estas ideas, nos remitimos a unos
experimentos:
·
Si
ponemos en contacto linfocitos TH con APC fijadas por glutaraldehido (y que por
lo tanto no expresan moléculas B7 en su membrana), el linfocito entra en
anergia. Esto se debe a que aunque ha contactado por su complejo TCR-CD3 con el
péptido-MHC (señal #1), la APC no le ha suministrado la señal coestimultoria
(señal #2), con lo que el TH produce poca IL-2.
·
Si
ponemos en contacto linfocitos TH con APC fijadas por glutaraldehido (y que por
lo tanto no expresan moléculas B7 en su membrana), el linfocito entra en
anergia. Esto se debe a que aunque ha contactado por su complejo TCR-CD3 con el
péptido-MHC (señal #1), la APC no le ha suministrado la señal coestimultoria
(señal #2), con lo que el TH produce poca IL-2.
·
Si
ponemos en contacto linfocitos TH con APC fijadas por glutaraldehido (y que por
lo tanto no expresan moléculas B7 en su membrana), el linfocito entra en
anergia. Esto se debe a que aunque ha contactado por su complejo TCR-CD3 con el
péptido-MHC (señal #1), la APC no le ha suministrado la señal coestimultoria
(señal #2), con lo que el TH produce poca IL-2.
El requerimiento
simultáneo de ambas señales implica que sólo las APC profesionales pueden
iniciar las respuestas inmunes dependientes de células T. Ello es importante
para evitar la autoinmunidad. Como se recordará, no todos los clones de T
potencialmente autorreactivos son eliminados durante la maduración tímica. Los
clones que "escapan" podrían en principio reconocer auto-péptidos en
cualquier célula propia (señal #1), y luego interaccionar con una APC, que les
suministraría la señal coestimulatoria (señal #2), con lo que se activarían,
iniciando una peligrosa reacción de autoinmunidad. Pero como hemos visto, la
realidad es que para que un linfocito T virgen sea activado, se le deben
suministrar las dos señales al mismo tiempo y en la misma célula, y este
criterio sólo lo cumplen esas células presentadoras profesionales. De esta
manera, se evita la autoinmunidad, y de hecho, si la célula T reconoce un
autopéptido en ausencia de la señal de B7 entra en anergia, con lo ese clon
será autotolerante.
Células
T a b
Un 90-95% de las
células T periféricas son de tipo a b (o sea, TCR-2), existiendo una proporción
de CD4+ doble que las CD8+. En general, las CD4+ funcionan como células T
coadyuvantes (TH) y las CD8+ lo hacen como T citotóxicas (TC), aunque parece
que ambas poblaciones expresan el mismo repertorio de segmentos variables (Va y
Vb ).
La población
circulante (periférica) de células T consiste en T vírgenes, T efectoras y T
memoria.
Las células T CD4+ y
T CD8+ vírgenes inmunocompetentes que acaban de madurar
abandonan el timo y entran en circulación en un estado de reposo (G0 del
ciclo celular). Se caracterizan por:
·
bajos
niveles de moléculas de adhesión
·
altos
niveles del receptor de alojamiento (homing) llamado
L-selectina, que les permite unirse a la dirigina(addressin) vascular
de las vénulas de endotelio alto (HEV) de los ganglios linfáticos. Esto permite
la extravasación del linfocito virgen hasta el interior del ganglio a partir de
la circulación.
·
Expresan
la isoforma de alto peso molecular de CD45 (llamada CD45RA), implicada en la
transducción de la señal de activación.
Veamos un resumen de
lo que pasa con los linfocitos T vírgenes una vez que salen del timo:
Los
linfocitos T vírgenes recirculan continuamente entre la sangre y la linfa.
Poseen la capacidad de extravasarse desde la corriente sanguínea hasta alguno
de los órganos linfoides secundarios, debido a las interacciones entre sus
receptores de alojamiento y las diriginas vasculares de las HEV de los ganglios
y del MALT. En estos órganos establecen contactos cada día con muchas células
presentadoras de antígeno. Si no la encuentra, el linfocito T sale del ganglio
vía linfático eferente, pasa a circulación, puede entrar a tejidos (de nuevo
escrutando APC adecuadas), y eventualmente regresa al sistema linfático. De
esta manera, aumenta la probabilidad de que un linfocito T encuentre la
combinación adecuada de péptido:MHC para la que están preparados sus receptores
TCR.
Cuando
una célula T virgen se encuentra en la paracorteza del ganglio con una APC que
le muestra la combinación adecuada de péptido:MHC, deja de migrar, y se embarca
en los pasos que le conducirán a ser activada y a producir un clon de
linfocitos T "armados" efectores.
Los tres
tipos de células presentadoras de antígeno profesionales del ganglio son el
macrófago, las células dendríticas interdigitantes y las células B. Estos son
los únicos tipos celulares capaces de suministrar la señal coestimulatoria. En
próximos temas iremos viendo cómo cada una de estas células cumplen misiones
concretas, procesando antígenos de clases diferentes de microorganismos, pero
ya podemos ver en los esquemas cómo cada tipo de APC se localiza en una zona o
zonas determinadas del ganglio. La producción de T efectoras tarda varios días
en producirse, al cabo de los cuales dichas células "armadas" salen
del órgano linfoide secundario para emigrar a los sitios de infección, donde
ejercerán los efectos pertinentes.
Interacciones
celulares que conducen eventualmente a la activación del linfocito T:
Cuando
las células T emigran a la paracorteza del ganglio, se van uniendo
transitoriamente con las APCs que encuentran en su camino, sobre todo con las
células dendríticas. Esta unión inicial es inespecífica, y en ella participan
moléculas de adhesión celular: CD2 y LFA-1 de T, que reconocen respectivamente
a LFA-3 y las diversas ICAM (ICAM-1, -2 y -3) de la APC.
Esta
unión, como acabamos de decir, es transitoria, y permite que mientras tanto el
linfocito T "escrute" grandes números de moléculas MHC de la APC, en
busca de la combinación adecuada péptidas: MHC.
Si no
encuentra esa combinación específica, la célula T se despega de la APC y sigue
su camino, interaccionando con otras APCs. Al cabo de unos días, si no ha
encontrado el pertinente péptido antigénico enclavado en el surco de MHC,
abandona el ganglio vía linfático eferente.
Si el
linfocito T encuentra su combinación péptido:MHC, la señalización a través del
complejo TCR-CD3 induce un cambio conformacional en las moléculas de LFA-1, de
modo que éstas aumentan su afinidad por las ICAM de la APC. Ello permite a su
vez estabilizar la unión específica entre la célula T y la APC, con lo que el
contacto entre ambas se prolonga (hasta varios días), de modo que da tiempo a
que el linfocito T se active y prolifere hasta diferenciarse en un clon de
células T armadas efectoras.
Unas 48 horas después de su activación, la célula T se convierte en un
blasto y comienza a proliferar en el ganglio linfático, diferenciándose al cabo
de 5-7 días en una subpoblación de células efectoras especializadas y otra
subpoblación de T de memoria. Las células T efectoras pueden ser de tres tipos
funcionales diferentes:
TC:
son las T matadoras (citotóxicas), que suelen ser fenotípicamente CD8+.
TH1:
son las denominadas T inflamatorias, y su papel estriba en activar a
macrófagos. Suelen ser fenotípicamente CD4+
TH2:
denominadas T colaboradoras o coadyuvantes en sentido estricto, especializadas
en secretar ciertas citoquinas que son esenciales en la activación de células B
y T. Suelen ser CD4+
Tipos celulares:
Como
sabemos, las T se activan en los órganos linfoides secundarios, tras su
contacto con las APCs profesionales, contacto en el que reciben las dos señales
(la específica y la coestimulatoria).
Una de
las manifestaciones centrales de la activación del linfocito T es que al final
de la compleja cascada de fosforilaciones y desfosforilaciones que vimos se
induce la expresión de varios genes, de los cuales los más importantes son el
de la IL-2 y el de su receptor (IL-2R).
La
secreción autocrina de IL-2 por parte del linfocito T suministra las señales
iniciales que permiten que éste entre en el ciclo celular (sale de G0):
se activa y prolifera, de modo que durante 4 o 5 días de crecimiento rápido se
va produciendo un clon expandido.
Finalmente,
las células procedentes de esta activación y proliferación se diferencian a
células T efectoras
Las T efectoras,
como ya sabemos, pueden ser de tres tipos, pero aparte de que cada uno posee un
arsenal específico, todas comparten una serie de importantes caracteres que las
distinguen de las T vírgenes:
Sus
requerimientos de activación son diferentes a las T vírgenes: ya no necesitan
la señal coestimulatoria.
Tienen
más sensibilidad a la activación, en parte debido al aumento de moléculas de
adhesión CD2 y LFA-1.
En los
humanos, la mitad de las T efectoras pierden la L-selectina (el receptor de
alojamiento), por lo que ya no tienden a extravasarse a los órganos linfoides
secundarios.
En
cambio, expresan otra molécula, la VLA-4, que permite que el T efector se una
al endotelio vascular cercano al sitio de infección. De esta manera, pueden
pasar a los tejidos donde se encuentra el microorganismo invasor, donde
ejercerán su papel efector.
Todas las funciones
efectoras de las T armadas dependen de que interaccionen adecuadamente con una
célula propia, que llamaremos célula objetivo.
Las Tc
efectoras se suelen denominan linfocitos T citolíticos (CTL), y su célula
objetivo es una célula diana, es decir, una célula propia nucleada infectada
intracitosólicamente.
Las TH1
(inflamatorias) tienen como objetivo a macrófagos que ya contienen en sus
vacuolas algún parásito. El efecto de la unión al macrófago será su activación,
que le ayudará a eliminar al invasor.
Los T de
memoria surgen como subpoblaciones diferenciadas a partir de la proliferación
de T vírgenes y T efectores durante una respuesta primaria.
Permanecen
en reposo (fase G0) durante mucho tiempo (hasta 30 años o más), como
una subpoblación expandida, una vez que ha declinado la subpoblación
"hermana" de células T efectoras.
Están
preparadas para responder de un modo más rápido e intenso cuando se vuelvan a
encontrar con el antígeno (en la respuesta secundaria). Ello se debe en parte a
que poseen menores requerimientos para ser activadas.
En
general poseen el mismo tipo de moléculas de membrana que los T efectores
correspondientes. De hecho, los T de memoria y los T efectores son difíciles de
distinguir entre sí, salvo que los primeros están en fase G0 y
tardan más tiempo en en responder que los T armados.
Al igual
que los T vírgenes recirculan continuamente entre la sangre y la linfa, pero al
carecer de L-selectina y presentar otras moléculas de adhesión, su patrón de
recirculación es distinto: Al carecer de L-selectina, no se unen a las vénulas
de endotelio alto (HEV) de los ganglios. En cambio, tienden al tejido terciario
(no linfoide), incluyendo la lámina propia del intestino, superficies
epiteliales de pulmones, de piel, etc. En general tienden a emigrar al tejido
en el que las células T progenitoras fueron estimuladas durante la respuesta
primaria. Esto es un valor adaptativo, ya que es evidente que si un patógeno
entró por determinado sitio, es probable que una segunda entrada de ese agente
tenga lugar en el mismo tipo de tejido.
Estos linfocitos no
fueron descubiertos hasta 1986, en que se reconocieron como una pequeña
población de células T periféricas que expresan CD3 pero no el
"típico" receptor TCR a b.
Constituyen del 5 al
10% de los T periféricos, y del 1 al 3% de los residentes en ganglios y otros
órganos linfoides. Sin embargo, son muy abundantes en la piel, y los epitelios
intestinal y pulmonar.
En el epitelio
intestinal existe una población diferente de linfocitos intraepiteliales (IEL).
Expresan gd , CD3 y CD8, pero carecen de Thy-1 (que como vimos, es el
marcador de linaje de las células T maduradas en el timo). Es probable que no
procedan del timo, sino de la médula ósea.
Estos linfocitos
epiteliales no recirculan, sino que son residentes fijos en esos tejidos
epiteliales. Lo curioso es que en cada tipo de epitelio la población residente
de T g d muestra un repertorio muy limitado de reordenaciones de
segmentos variables; además proceden de "oleadas" distintas surgidas
durante la vida fetal.
Subscribe to:
Posts (Atom)